

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.258

ASSESSMENT OF TRAIT RELATIONSHIP IN WHEAT (TRITICUM AESTIVUM L.) USING CORRELATION AND PATH COEFFICIENT ANALYSIS

Anuj Mishra^{1*}, Shweta^{1*}, Vijay Kumar Yadav¹, Lokendra Singh¹, Sarvendra Kumar¹, Rajendra Kumar Yadav¹, C. L. Maurya², Vishal Yadav³, Utkarsh Tiwari¹, and Shivam Tripathi¹

¹Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur-208002 (U.P.), India

²Department of Seed Science and Technology, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur-208002 (U.P.), India

³Department of Vegetable Science, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur-208002 (U.P.), India

*Corresponding authors E-mail: anujmishra8932@gmail.com and shweta1805@gmail.com (Date of Receiving : 29-07-2025; Date of Acceptance : 09-10-2025)

ABSTRACT

The present study was conducted during Rabi 2024-25 at C.S. Azad University of Agriculture and Technology, Kanpur, to identify key traits influencing seed yield in wheat crop. The experimental material comprised 157 treatments (21 parents, 68 F₁s, and 68 F₂s) evaluated in a randomized block design with three replications. Sixteen morphological and physiological traits were recorded, and correlation and path coefficient analysis were done to identify the association between seed yield and yield attributing traits. Correlation analysis showed that seed yield per plant had significant positive associations with biological yield, harvest index, and chlorophyll content in parents; with productive tillers, number of grains per spike, and harvest index in F_1 s; and with harvest index in F_2 s. Path analysis revealed that harvest index and biological yield exerted the strongest direct effects on seed yield across all generations, followed by number of grains per spike, productive tillers, and 1000-seed weight. Biological yield and chlorophyll content also contributed indirectly to yield through harvest index and other traits. The findings suggested that traits viz., harvest index, biological yield per plant, number of grains per spike, and productive tillers were the most important as they are positively associated as well as directly affecting seed yield. Therefore, focus should be given on selection of genotypes based on these characters for the development of superior wheat genotypes with more seed yield and improved productivity.

Keywords: Wheat, Correlation coefficient, Path coefficient, Seed yield, Chlorophyll content.

Introduction

Wheat (*Triticum aestivum* L) is one of the most important self-pollinating crop belongs to the Poaceae family and having chromosome number 2n=6x=42. About 55-70% of the world's culinary calories and 20% of its protein comes from wheat, which also contains 1.7% fat, 2.7% minerals, 2% fiber, and 12% moisture (Breiman and Graur., 1995; Sharma *et al.*, 2021). Additionally, it contains a number of vitamins

and minerals, including riboflavin (0.13 mg 100 g⁻¹), calcium (37 mg 100 g⁻¹), nicotinic acid (5.4 mg 100 g⁻¹), iron (4.1 mg 100 g⁻¹), and thiamine (0.45 mg 100 g⁻¹) (Lorenz and Kulp, 1991). Due to Its significance, it is known as the "King of cereals".

Being a major cereal crop, wheat accounts for about 30% of the world's cereal area to provide food for about 36% of the global population. In India wheat is cultivated around 31.86 million hectares area with

production of 112.19 million and crop productivity of 3484 kg/ha (Anonymous, 2022-23). Uttar Pradesh holds the top position in both land area and wheat production among Indian states. The state achieves an impressive wheat yield of 38.07 million tonnes from a cultivated area of 10.19 million hectares, resulting in a productivity rate of 3,730 kg per hectare (Anonymous, 2022-23).

As the population of the world is increasing rapidly day-by-day, the risks of food crisis are also increasing. According to an estimate by Singh *et al.* (2019), with the ongoing expansion of population in the nation, there will be a requirement of more than 140 million tons of wheat grain to be produced by 2050 and local production is insufficient to fulfil current demand.

Wheat production can increase either through increasing yield per unit land, or by expanding the cultivated area. Since, crop land expansion is a very difficult option because land is a finite resource and expansion of cultivated land causes human residential, livestock grazing and some other problems (Semahegn *et al.*, 2020). Therefore, there is a need of development of genotypes which have high yield.

According to Chhibber and Jain (2014) there is need to identify traits related with yield and more focus should be given on those traits which are closely associated with grain yield. While correlation analysis is widely used to study the relationship between yield and its components, it alone is insufficient to determine their relative importance (Ali and Shakor, 2012; Anwar et al., 2009; Bhutta et al., 2005). Therefore, there is need of path coefficient analysis which provides more information by partitioning correlations into direct and indirect effects of yield components on grain yield (Del Moral et al., 2003).

Keeping above points in mind present investigation was conducted to identify those traits which are closely associated and directly or indirectly influencing the seed yield.

Material and Methods

The present experiment comprised of 157 treatments (21 parents + 68 F₁s + 68 F₂s) was conducted at Nawabganj Farm of C. S. Azad University of Agriculture and Technology, Kanpur-208002 (U.P.) during *Rabi*, 2024-25. All the parents along with crosses were grown in randomized block design with three replications each and spacing of 20 x 10 cm. Observations were recorded for 16 metric traits namely, days to 50% heading, days to maturity, plant height (cm), number of total tillers per plant, number of

productive tillers per plant, flag leaf area (cm²), spike length (cm), number of spikelets per spike, number of grains per spike, biological yield per plant (gm), 1000-seed weight (gm), harvest index (%), seed yield per plant (gm), protein content (%), chlorophyll content (µmol m²) and canopy temperature depression (°C).

Statistical analysis was done by using MS Excel 2021. The correlations between characters were determined by using the Pearson correlation coefficient method and "metan" package (Olivoto and Lúcio, 2020) in R software. The direct and indirect effects of each trait were assessed by using path analysis (Dewey and Lu., 1959) and R software.

Results and Discussion

(A) Correlation coefficient

The genetic architecture of seed yield is based on the balance or overall net effect of various yield components which are directly or indirectly interacting with each another. Therefore, selection for yield *per se* alone would not be effective unless selection for various yield component characters responsible also done. Therefore, identification of yield components and information regarding their relationship with seed yield and with each other are very important for developing high yielding varieties. The correlation between yield and contributing traits among parents, F_{1S} and F_{2S} are depicted in Table 1, 2 & 3 respectively.

In present investigation, among parents, seed yield per plant showed significant and positive association with biological yield per plant (0.83**), harvest index (0.88*) and chlorophyll content (0.60**), while with number of productive tillers per plant (0.28*), number of grains per spike (0.46**) and harvest index (0.55**) in F_1 s and with harvest index (0.57**) in F_2 generation. Similar reports were given for number of productive tillers per plant by Baranwal et al. (2012), Kamani et al. (2017) and Singh et al. (2023), for biological yield per plant by Tripathi et al. (2011), Bhushan et al. (2013), Avinashe et al. (2015), Kamani et al. (2017), Dvivedi et al. (2023) and Kumar et al. (2025), for number of grains per spike by Tripathi et al. (2011), Kumar et al. (2014) and Kumar et al. (2025), for harvest index by Kumar et al. (2014), Avinashe et al. (2015), Kamani et al. (2017), Dvivedi et al. (2023), Singh et al. (2023) and Kumar et al. (2025) and for chlorophyll content by Fellahi et al. (2013) and Karla et al. (2024).

The traits *viz.*, days to maturity (-0.07), plant height (-0.12), spike length (-0.13), number of spikelets per spike (-0.10) and number of grains per spike (-

Anuj Mishra et al. 1785

0.28) among parents, plant height ($F_1 = -0.11$, F_2 -0.10), flag leaf area ($F_1 = -0.09$, $F_2 = -0.10$), spike length ($F_1 = -0.07$, $F_2 = -0.06$), biological yield per plant ($F_1 = -0.03$, $F_2 = -0.12$) and protein content ($F_1 =$ -0.03, $F_2 = -0.05$) among F_1 and F_2 exhibited negative but non-significant correlation with seed yield per plant. This finding also supported by Bhushan et al. (2013) and Mahparaa et al. (2024) for days to maturity, Bhushan et al. (2013) and Mahparaa et al. (2024) for plant height, Dvivedi et al. (2023), Maurya et al. (2023) and Singh et al. (2023) for flag leaf area, Maurya et al. (2023) and Singh et al. (2023) spike length, Singh et al. (2020) for number of spikelets per spike, Singh et al. (2020) and Singh et al. (2023) for biological yield per plant and Kumari et al. (2020) for protein content.

(B) Path coefficient

The technique of path coefficient was given by Wright (1921) and later applied to plant breeding by Dewey and Lu (1959), and now a days it is widely used in crop improvement program. It enables breeders to evaluate the contribution of different traits to yield, thereby assisting in the development of efficient selection strategies. Therefore, present investigation was also done to study the direct and indirect effects of different characters (independent) on seed yield per plant (dependent). The direct and indirect effect of studied traits towards seed yield per plants among parents, F_1 s and F_2 s are depicted in Table 4,5 & 6 respectively.

In present investigation, maximum positive direct effect on seed yield per plant was exhibited by harvest index (P = 0.6131, $F_1 = 1.8203 \& F_2 = 1.9219$) in all three generations. The traits namely, biological yield per plant (P = 0.5382, $F_1 = 1.5285 \& F_2 = 1.6377$), number of grains per spike (P = 0.0087, $F_1 = 0.0481$ & $F_2 = 0.0004$), protein content (P = 0.0095, $F_1 = 0.0276$ & $F_2 = 0.0098$), canopy temperature depression (P = 0.0013, $F_1 = 0.0234$ & $F_2 = 0.0115$), 1000-seed weight $(P = 0.0031, F_1 = 0.0023 \& F_2 = 0.0106)$ and number of productive tillers per plant (P = 0.0006, $F_1 = 0.0348$ & $F_2 = 0.1341$) also exhibited positive and direct effect on seed yield per plant across all three generations. This indicates that these characters emerged are most important direct yield contributors and emphasis should be given on these traits during selection of superior genotypes for seed yield in wheat. Previous workers *viz.*, Tripathi *et al.* (2011), Bhushan *et al.* (2013), Rathod *et al.* (2019), Alnajjar and Dawod (2020), Devesh *et al.* (2021), Maurya *et al.* (2023) and Singh *et al.* (2023) also found direct influence of these traits on seed yield per plant.

Biological yield per plant showed strong positive indirect effects on grain yield through harvest index, chlorophyll content, protein content, spike length, and number of grains per spike, while minor negative effects were recorded *via* plant height, total tillers, and canopy temperature depression. Harvest index consistently contributed positively across F₁ and F₂ generations, with notable indirect effects through biological yield and yield components, though some negative influence was observed *via* flag leaf area and protein content. Chlorophyll content also played an important role, enhancing yield indirectly through biological yield, harvest index, and grain number.

Through above paragraphs it was identified that harvest index, biological yield per plant were most important traits because they exhibited both direct as well as indirect positive effect on seed yield and its contributing traits. Therefore, emphasis should be given on these traits during selection for identifying superior genotypes with improved seed yield potential in wheat crop.

Conclusion

Effective selection is very crucial improvement of seed yield and understanding of the interrelationships among yield-contributing traits helps in determining their importance. There are several traits which directly or indirectly influenced the seed yield in wheat. These traits also showed positive or negative association with seed yield. Therefore, evaluating both the performance of individual characters and their correlations is essential in genotype selection. Traits with strong direct effects and positive associations with yield, such as biological yield per plant, harvest index, number of grains per spike, and number of productive tillers per plant should be prioritized in future breeding programs in selection of superior genotypes for seed yield which ultimately enhance productivity in wheat crop.

Table 1: Pearson's correlation coefficients among 16 characters of parents in wheat

	DH		PH	NTT	NPT	FLA	SL	NSS	NGS	BYP	TSW	HI	CC	CTD	PC	SYP
DH	1	0.82**	0.34	0.04	0.17	0.04	-0.30	0.59**	0.55	-0.13	-0.19	0.14	-0.09	-0.05	0.13	0.02
DM		1	0.54*	-0.1	0.20	0.13	-0.26	0.56**	0.29	-0.18	-0.18	0.04	0.15	-0.03	-0.12	-0.07
PH			1	-0.13	0.25	0.30	0.31	0.25	-0.15	-0.27	-0.28	0.05	-0.02	-0.38	-0.32	-0.12
NTT				1	0.67**	0.15	-0.03	-0.02	-0.16	0.28	0.12	0.26	0.25	0.27	0.11	0.30
NPT					1	0.32	0.03	0.18	-0.30	0.33	0.05	0.36	0.36	0.33	0.06	0.39
FLA						1	0.64**	-0.15	-0.32	0.16	0.11	0.25	0.03	0.37	-0.14	0.22
SL							1	-0.13	-0.36	-0.1	0.15	-0.08	-0.22	0.06	-0.13	-0.13
NSS								1	0.47*	-0.02	-0.11	-0.15	0.01	0.13	0.22	-0.10
NGS									1	-0.27	0.08	-0.23	-0.39	-0.27	0.32	-0.28
BYP										1	0.34	0.47*	0.43	0.45*	0.35	0.83**
TSW											1	0.12	0.20	0.23	0.45*	0.26
HI												1	0.57**	0.12	-0.04	0.88**
CC													1	0.39	-0.22	0.60**
CTD														1	0.16	0.32
PC												-			1	0.17
SYP																1

^{*, **} Significant at 5% and 1% probability level, respectively

DH = Days to 50% Heading,

NTT = Number of Total Tillers per plant

SL = Spike Length (cm)

BYP = Biological Yield Per Plant (g)

SYP = Seed Yield Per Plant (g), **PC** = Protein Content (%)

DM = Days to Maturity,

NPT = Number of Productive Tillers per plant,

NSS = Number of Spikelet per Spike

TSW = 1000 Seed Weight (g)

CC = Chlorophyll Content (μ mol m⁻²)

PH = Plant Height (cm),

FLA = Flag Leaf Area (cm²)

NGS = Number of Grains per Spike

HI = Harvest index (%)

CTD = Canopy Temperature Depression (°C)

Table 2: Pearson's correlation coefficients among 16 characters of F₁ in wheat

		I								S OI T 1			66	CIED	D.C.	OT ID
	DH	DM	PH	NTT	NPT	FLA	SL	NSS	NGS	BYP	TSW	HI	CC	CTD	PC	SYP
DH	1	-0.02	0.01	0.09	0.12	0.21	-0.15	-0.02	0.08	0.02	-0.12	0.02	0.11	-0.09	0.14	0.05
DM		1	0.13	-0.07	-0.07	0.05	0.15	0.08	0.09	0.07	0.01	-0.01	-0.04	-0.19	0.08	0.11
PH			1	0.15	0.07	0.09	0.08	0.01	0.09	0.91**	0.01	-0.82**	0.03	-0.19	0.13	-0.11
NTT				1	0.85**	-0.09	-0.06	-0.01	0.23	0.14	0.09	-0.01	0.06	0.01	0.16	0.22
NPT					1	-0.1	-0.12	0.01	0.30*	0.10	-0.03	0.06	0.15	-0.06	0.10	0.28*
FLA						1	0.24	-0.13	-0.13	0.10	-0.07	-0.14	-0.04	0.03	-0.17	-0.09
SL							1	0.01	-0.28*	0.02	0.24*	-0.04	-0.05	0.15	0.10	-0.07
NSS								1	0.34**	-0.02	-0.06	0.13	0.04	0.14	0.10	0.19
NGS									1	0.08	-0.09	0.16	0.19	-0.03	0.11	0.46**
BYP										1	0.01	-0.85**	0.09	-0.15	0.11	-0.03
TSW											1	-0.09	-0.21	0.37**	0.27*	0.12
HI												1	0.03	0.13	-0.12	0.55**
CC													1	-0.20	-0.01	0.15
CTD														1	-0.05	0.04
PC															1	-0.03
SYP																1

^{*, **} Significant at 5% and 1% probability level, respectively

DH = Days to 50% Heading,

NTT = Number of Total Tillers per plant

SL = Spike Length (cm)

BYP = Biological Yield Per Plant (g)

SYP = Seed Yield Per Plant (g), **PC** = Protein Content (%)

DM = Days to Maturity,

NPT = Number of Productive Tillers per plant,

NSS = Number of Spikelet per Spike

TSW = 1000 Seed Weight (g)

CC = Chlorophyll Content (μ mol m⁻²)

PH = Plant Height (cm),

FLA = Flag Leaf Area (cm²)

NGS = Number of Grains per Spike

HI = Harvest index (%)

CTD = Canopy Temperature Depression (°C)

Anuj Mishra et al. 1787

Table 3: Pearson's correlation coefficients among 16 characters of F₂ in wheat

	DH	DM	PH	NTT	NPT	FLA	SL	NSS	NGS	BYP	TSW	HI	CC	CTD	PC	SYP
DH	1	-0.03	-0.01	0.04	-0.03	0.13	-0.20	-0.12	-0.06	-0.01	-0.05	0.03	-0.13	-0.02	0.04	0.06
DM		1	0.07	-0.12	-0.13	0.02	0.14	0.17	0.01	-0.01	0.04	0.03	-0.08	-0.15	0.12	0.06
PH			1	0.14	0.13	0.08	0.08	0.06	0.08	0.95**	0.03	-0.83**	0.05	-0.19	0.12	-0.10
NTT				1	0.80**	-0.09	-0.09	-0.19	-0.12	0.16	0.29*	-0.08	0.03	-0.02	0.14	0.10
NPT					1	-0.04	-0.09	-0.31*	-0.11	0.16	0.17	-0.22	-0.07	-0.1	0.04	0.23
FLA						1	0.23	0.01	-0.07	0.13	-0.16	-0.15	-0.04	0.04	-0.17	-0.10
SL							1	0.07	-0.15	0.05	0.14	-0.05	0.10	0.15	0.10	-0.06
NSS								1	0.06	0.01	-0.12	0.03	-0.03	0.15	-0.12	0.08
NGS									1	0.06	-0.01	0.06	0.11	-0.18	-0.12	0.21
BYP										1	0.04	-0.87**	0.06	-0.16	0.10	-0.12
TSW											1	0.03	-0.16	0.35**	0.18	0.12
HI												1	0.03	0.13	-0.12	0.57**
CC													1	-0.16	-0.02	0.15
CTD														1	-0.05	0.02
PC															1	-0.05
SYP																1

^{*, **} Significant at 5% and 1% probability level, respectively

DH = Days to 50% Heading,

NTT = Number of Total Tillers per plant

SL = Spike Length (cm)

BYP = Biological Yield Per Plant (g)

SYP = Seed Yield Per Plant (g),

PC = Protein Content (%)

DM = Days to Maturity,

NPT = Number of Productive Tillers per plant,

NSS = Number of Spikelet per Spike

TSW = 1000 Seed Weight (g)

 $CC = Chlorophyll Content (\mu mol m⁻²)$

PH = Plant Height (cm),

FLA = Flag Leaf Area (cm²) NGS = Number of Grains per Spike

III - Hawagat index (9/)

HI = Harvest index (%)

CTD = Canopy Temperature Depression (°C)

Table 4: Direct and indirect effect of 16 traits on seed yield per plant of 21 parents

								<i>J</i>	F F	111 01 2	F					
	DH	DM	PH	NTT	NPT	FLA	SL	NSS	NGS	BYP	TSW	HI	CC	CTD	PC	linear
DH	0.0162	-0.0132	0.0016	-0.0005	0.0001	-0.0002	0.0049	0.0015	-0.0048	-0.0702	-0.0006	0.0882	-0.0017	0.0002	0.0012	0.0227
DM	0.0133	-0.0162	0.0025	0.0012	0.0001	-0.0006	0.0042	0.0014	-0.0025	-0.0957	-0.0005	0.0227	0.0031	0.0001	-0.0011	-0.0679
PH	0.0055	-0.0088	0.0047	0.0016	0.0001	-0.0013	-0.0052	0.0006	0.0013	-0.1466	-0.0009	0.0306	-0.0003	0.0014	-0.0030	-0.1204
NTT	0.0007	0.0016	-0.0006	-0.0129	0.0004	-0.0007	0.0005	-0.0001	0.0014	0.1520	0.0004	0.1565	0.0050	-0.0010	0.0010	0.3041
NPT	0.0028	-0.0032	0.0012	-0.0086	0.0006	-0.0014	-0.0005	0.0005	0.0026	0.1753	0.0002	0.2182	0.0072	-0.0012	0.0006	0.3942
FLA	0.0006	-0.0020	0.0014	-0.0020	0.0002	-0.0044	-0.0106	-0.0004	0.0028	0.0851	0.0003	0.1523	0.0007	-0.0014	-0.0014	0.2212
SL	-0.0048	0.0041	0.0015	0.0004	0.0000	-0.0028	-0.0166	-0.0003	0.0031	-0.0552	0.0005	-0.0519	-0.0045	-0.0002	-0.0013	-0.1282
NSS	0.0096	-0.0091	0.0012	0.0003	0.0001	0.0007	0.0022	0.0025	-0.0041	-0.0132	-0.0003	-0.0926	0.0001	-0.0005	0.0021	-0.1011
NGS	-0.0090	-0.0047	-0.0007	0.0020	-0.0002	0.0014	0.0059	0.0012	0.0087	0.1435	0.0003	0.1400	-0.0079	0.0010	0.0030	0.2848
BYP	-0.0021	0.0029	-0.0013	-0.0036	0.0002	-0.0007	0.0017	-0.0001	0.0024	0.5382	0.0011	0.2855	0.0087	-0.0016	0.0033	0.8344**
TSW	-0.0031	0.0028	-0.0013	-0.0016	0.0000	-0.0005	-0.0025	-0.0003	-0.0007	0.1838	0.0031	0.0763	0.0040	-0.0009	0.0042	0.2635
НІ	0.0023	-0.0006	0.0002	-0.0033	0.0002	-0.0011	0.0014	-0.0004	0.0020	0.2506	0.0004	0.6131	0.0115	-0.0004	-0.0004	0.8755**
CC	-0.0014	-0.0025	-0.0001	-0.0032	0.0002	-0.0001	0.0037	0.0001	0.0034	0.2324	0.0006	0.3495	0.0201	-0.0014	-0.0020	0.5992**
CTD	-0.0008	0.0004	-0.0018	-0.0035	0.0002	-0.0017	-0.0010	0.0003	0.0024	0.2432	0.0007	0.0707	0.0078	0.0013	0.0015	0.3198
PC	0.0021	0.0019	-0.0015	-0.0014	0.0000	0.0006	0.0022	0.0005	-0.0028	0.1886	0.0014	-0.0252	-0.0043	-0.0006	0.0095	0.1711

^{*, **} Significant at 5% and 1% probability level, respectively

DH = Days to 50% Heading,

NTT = Number of Total Tillers per plant

SL = Spike Length (cm)

BYP = Biological Yield Per Plant (g)

SYP = Seed Yield Per Plant (g),

PC = Protein Content (%)

DM = Days to Maturity,

NPT = Number of Productive Tillers per plant,

NSS = Number of Spikelet per Spike

TSW = 1000 Seed Weight (g)

 $CC = Chlorophyll Content (\mu mol m⁻²)$

PH = Plant Height (cm),

FLA = Flag Leaf Area (cm²)

NGS = Number of Grains per Spike

HI = Harvest index (%)

CTD = Canopy Temperature Depression (°C)

Table 5: Direct and indirect effect of 16 traits on seed yield per plant of 68 F₁s

	DH	DM	PH	NTT	NPT	FLA	SL	NSS	NGS	BYP	TSW	НІ	CC	CTD	PC	linear
DH	-0.0324	-0.0006	0.0001	-0.0008	0.0040	0.0070	0.0051	0.0005	0.0040	0.0309	-0.0003	0.0406	-0.0049	-0.0022	0.0039	0.0549
DM	0.0005	0.0358	-0.0036	0.0006	-0.0023	0.0018	-0.0049	-0.0024	0.0043	0.1014	0.0001	-0.0182	0.0018	-0.0045	0.0021	0.1125
PH	0.0002	0.0045	-0.0281	-0.0013	0.0025	0.0030	-0.0027	0.0001	0.0043	1.3978	0.0002	-1.4864	-0.0012	-0.0045	0.0036	-0.1084
NTT	-0.0030	-0.0024	-0.0041	-0.0086	0.0296	-0.0029	0.0021	0.0002	0.0110	0.2133	0.0002	-0.0187	-0.0028	0.0003	0.0045	0.2186
NPT	-0.0037	-0.0023	-0.0020	-0.0073	0.0348	-0.0034	0.0040	-0.0002	0.0145	0.1468	-0.0001	0.1026	-0.0069	-0.0013	0.0029	0.2782*
FLA	-0.0067	0.0019	-0.0025	0.0007	-0.0035	0.0337	-0.0079	0.0039	-0.0060	0.1525	-0.0002	-0.2578	0.0016	0.0007	-0.0047	-0.0942
SL	0.0049	0.0053	-0.0023	0.0005	-0.0041	0.0080	-0.0336	0.0000	-0.0135	0.0270	0.0006	-0.0732	0.0021	0.0034	0.0028	-0.0721
NSS	0.0005	0.0028	0.0001	0.0001	0.0003	-0.0044	0.0001	-0.0302	0.0165	-0.0381	-0.0001	0.2343	-0.0016	0.0033	0.0029	0.1864
NGS	-0.0027	0.0032	-0.0025	-0.0020	0.0105	-0.0042	0.0094	-0.0104	0.0481	0.1238	-0.0002	0.2954	-0.0085	-0.0008	0.0030	0.4622**
BYP	-0.0007	0.0024	-0.0257	-0.0012	0.0033	0.0034	-0.0006	0.0008	0.0039	1.5285	0.0002	-1.5420	-0.0039	-0.0035	0.0029	-0.0324
TSW	0.0038	0.0002	-0.0003	-0.0008	-0.0011	-0.0022	-0.0080	0.0019	-0.0041	0.0137	0.0023	-0.1554	0.0094	0.0087	0.0075	-0.1246
НІ	-0.0007	-0.0004	0.0230	0.0001	0.0020	-0.0048	0.0013	-0.0039	0.0078	-1.2948	-0.0002	1.8203	-0.0014	0.0031	-0.0032	0.5483**
CC	-0.0035	-0.0014	-0.0008	-0.0005	0.0054	-0.0012	0.0016	-0.0011	0.0091	0.1322	-0.0005	0.0555	-0.0446	-0.0046	-0.0003	0.1451
CTD	0.0030	-0.0069	0.0054	-0.0001	-0.0020	0.0010	-0.0049	-0.0043	-0.0016	-0.2276	0.0009	0.2447	0.0088	0.0234	-0.0013	0.0386
PC	-0.0045	0.0027	-0.0037	-0.0014	0.0036	-0.0057	-0.0034	-0.0032	0.0052	0.1615	0.0006	-0.2120	0.0005	-0.0011	0.0276	-0.0332

^{*, **} Significant at 5% and 1% probability level, respectively

DH = Days to 50% Heading,

NTT = Number of Total Tillers per plant

SL = Spike Length (cm)

BYP = Biological Yield Per Plant (g)

SYP = Seed Yield Per Plant (g),

PC = Protein Content (%)

DM = Days to Maturity,

NPT = Number of Productive Tillers per plant,

NSS = Number of Spikelet per Spike TSW = 1000 Seed Weight (g)

CC = Chlorophyll Content (µmol m⁻²)

PH = Plant Height (cm),

FLA = Flag Leaf Area (cm²) NGS = Number of Grains per Spike

HI = Harvest index (%)

CTD = Canopy Temperature Depression (°C)

Table 6: Direct and indirect effect of 16 traits on seed yield per plant of 68 F₂s

										- DT 10				COTTO:	200	
	DH	DM	PH	NTT	NPT	FLA	SL	NSS	NGS	BYP	TSW	HI	CC	CTD	PC	linear
DH	0.0020	-0.0011	0.0007	0.0039	0.0040	0.0003	0.0068	0.0002	0.0000	-0.0199	0.0005	0.0563	0.0027	-0.0003	0.0004	0.0564
DM	-0.0001	0.0330	-0.0050	-0.0118	0.0183	0.0000	-0.0047	-0.0002	0.0000	-0.0227	-0.0004	0.0490	0.0017	-0.0017	0.0012	0.0566
PH	0.0000	0.0024	-0.0684	0.0139	-0.0186	0.0002	-0.0029	-0.0001	0.0000	1.5622	-0.0003	-1.5866	-0.0011	-0.0021	0.0012	-0.1002
NTT	0.0001	-0.0038	-0.0093	0.1025	-0.1151	-0.0002	0.0031	0.0002	0.0000	0.2697	-0.0031	-0.1472	-0.0007	-0.0003	0.0014	0.0973
NPT	-0.0003	-0.0042	-0.0188	-0.0819	0.1341	-0.0002	0.0023	-0.0003	0.0001	0.1763	-0.0018	0.0228	0.0015	-0.0011	-0.0004	0.2278
FLA	0.0003	0.0007	-0.0053	-0.0093	0.0053	0.0024	-0.0081	0.0000	0.0000	0.2057	0.0017	-0.2958	0.0009	0.0004	-0.0017	-0.1027
SL	-0.0004	0.0045	-0.0057	-0.0092	0.0135	0.0006	-0.0347	-0.0001	-0.0001	0.0771	-0.0014	-0.1015	-0.0022	0.0017	0.0010	-0.0568
NSS	-0.0002	0.0056	-0.0043	-0.0192	0.0442	0.0000	-0.0025	-0.0013	0.0000	0.0002	0.0013	0.0523	0.0006	0.0017	-0.0011	0.0772
NGS	-0.0001	0.0004	-0.0057	-0.0123	0.0159	-0.0002	0.0053	-0.0001	0.0004	0.0959	0.0001	0.1194	-0.0024	-0.0021	-0.0011	0.2134
BYP	0.0000	-0.0005	-0.0652	0.0169	-0.0236	0.0003	-0.0016	0.0000	0.0000	1.6377	-0.0004	-1.6794	-0.0013	-0.0018	0.0010	-0.1179
TSW	-0.0001	0.0012	-0.0022	0.0299	-0.0244	-0.0004	-0.0047	0.0002	0.0000	0.0470	0.0106	0.0501	0.0035	0.0040	0.0018	0.1164
HI	0.0001	0.0008	0.0564	-0.0078	0.0317	-0.0004	0.0018	0.0000	0.0000	-1.4310	-0.0003	1.9219	-0.0007	0.0015	-0.0012	0.5730**
CC	-0.0003	-0.0026	-0.0035	0.0033	0.0101	-0.0001	-0.0036	0.0000	0.0000	0.0989	0.0017	0.0658	-0.0215	-0.0018	-0.0002	0.1463
CTD	0.0000	-0.0050	0.0128	-0.0023	0.0141	0.0001	-0.0051	-0.0002	-0.0001	-0.2611	-0.0037	0.2561	0.0034	0.0115	-0.0005	0.0198
PC	0.0001	0.0041	-0.0082	0.0142	-0.0056	-0.0004	-0.0035	0.0002	0.0000	0.1687	-0.0019	-0.2268	0.0005	-0.0006	0.0098	-0.0496

^{*, **} Significant at 5% and 1% probability level, respectively

DH = Days to 50% Heading,

NTT = Number of Total Tillers per plant

SL = Spike Length (cm)

BYP = Biological Yield Per Plant (g)

SYP = Seed Yield Per Plant (g),

PC = Protein Content (%)

DM = Days to Maturity,

NPT = Number of Productive Tillers per plant,

NSS = Number of Spikelet per Spike

TSW = 1000 Seed Weight (g)

 $CC = Chlorophyll Content (\mu mol m⁻²)$

PH = Plant Height (cm),

FLA = Flag Leaf Area (cm²)

NGS = Number of Grains per Spike

HI = Harvest index (%)

CTD = Canopy Temperature Depression (°C)

Anuj Mishra et al. 1789

Acknowledgement

We are highly thankful for head Section of Economic Botanist (*Rabi* Cereals), CSA University, Kanpur) for providing genotypes and facilities for conducting experiments.

References

- Ali, I. and Shakor, E. (2012). Heritability, variability, genetic correlation and path analysis for quantitative traits in durum and bread wheat under dry farming conditions. *Meso. J. of Ag.*, **40** (4), 27-39.
- Alnajjar, S. and Dawod, K. M. (2020). Correlation and path coefficient analysis in bread wheat. *Meso. J. of Agri.*, **48**(1), 25-35.
- Anonymous (2022-23). 2nd Advance estimates from directorate of economics and statistics, ministry of agriculture and farmers welfare (MoA and FW, India).
- Anwar, J., Ali, M., Hussain, M., Sabir, W., Khan, M., Zulkiffal, M. and Abdullah, M. (2009). Assessment of yield criteria in bread wheat through correlation and path analysis. *J. of Animal and Plant Sci.*, 19, 185-188.
- Avinashe, H.A.; Shukla, R.S.; Dubey, N. and Jaiwar, S. (2015). Correlation and path analysis for yield and yield contributing characters in bread wheat (*Triticum aestivum* L.). *Ele. J. of Plant Breed.*, **6**(2), 555-559.
- Baranwal, D. K., Mishra, V. K., Vishwakarma, M. K., Yadav, P.S. and Arun, B. (2012). Studies on genetic variability, correlation and path analysis for yield and yield contributing traits in wheat (*T. aestivum* L. em thell.). *Plant Archives*, **12**(1), 99-104.
- Bhushan, B., Bharti, Sonu, Ojha, A., Pandey, M., Gourav, S. S., Tyagi, B. S. and Singh, G. (2013). Genetic variability, correlation coefficient and path analysis of some quantitative traits in bread wheat. *J. Wheat Res.*, **5**(1), 21-26.
- Bhutta, W. M., Akhtar, J., Anwar-ul-Haq, M. and Ibrahim, M. (2005). Cause and effect relations of yield components in spring wheat (*Triticum aestivum* L.) under normal conditions. *Caderno de Pesquisa Sér. Bio., Santa Cruz do Sul.*, 17(1), 7-12.
- Breiman A. and Graur B. (1995). Wheat Evolution. *Israel J. Plant Sci.* **43**, 85-98.
- Chhibber, S. and Jain, D. (2014). Inter correlation studies among yield and its contributing traits in bread wheat (*Triticum aestivum* L.) genotypes grown in Haryana, India. *Inter. J. of Current Res. and Rev.*, **6**(12), 12.
- Del Moral, L., Rharrabti, Y., Villegas, D. and Royo, C. (2003). Evaluation of grain yield and its components in durum wheat under Mediterranean conditions. *Agronomy*, **95** (2), 266-274.
- Devesh, P., Moitra, P. K. and Shukla, R. S. (2021). Correlation and path coefficient analysis for yield, yield components and quality traits in wheat. *E. J. of Plant Bree.*, **12**(2), 388-395.
- Dewey, D.R. and Lu, K.H. (1959). Correlation and path-coefficient analysis of components of crested wheat grass seed production. *Agron. J.* **51**, 515-518.
- Dvivedi, R. S., Singh, B., Pathak, V. N., Verma, S. P. and Pandey, K. K. (2023). Genetic variability, character

association and component analysis in wheat, Genetic variability in wheat. *J. of Agri Search*, **10**(3), 151-157.

- Fellahi, Z., Hannachi, A., Bouzerzour, H., Boutekrabt, A. (2013). Correlation between traits and path analysis coefficient for grain yield and other quantitative traits in bread wheat under semi-arid conditions. *J Agric Sustainability.*, 3(1),16-26.
- Kamani, D. L., Babariya, C.A. and Marviya, P.B. (2017). Correlation coefficient and path coefficient analysis for yield components in wheat (*Triticum aestivum L.*). Int. J. Pure App. Biosci., 5(5), 545-552.
- Karla, U., Choudhary, V. K., Singh, S.K., Vignesh S, Gurram, S. and Lal, M. (2024), Correlation and path coefficient analysis in bread wheat (*Triticum aestivum L.*) under timely and late sown conditions. *Inter. J. of Res. in Agron.*, 7(6), 417-421.
- Kumar, B., Yadav, V. K., Yadav, M. C., Nayak, A. K., and Singh, S. (2025). Genetic diversity and yield traits analysis using multivariate approach in bread wheat varieties. J. of Adv. in Bio. & Biotech. 28(4),819-833.
- Kumar, R., Bhushan, B., Pal, R. and Gaurav, S.S. (2014). Correlation and path coefficient analysis for quantitative traits in wheat (*Triticum aestivum* L.) under normal condition. *Annals of Agric. Bio. Res.* **19**(3), 447-450.
- Kumari, P., De, N. and Kumari, A. K. A. (2020). Genetic variability, correlation and path coefficient analysis for yield and quality traits in wheat (*Triticum aestivum L.*). *Inter.J. of Curr. Micro. and App. Sci.*, **9**(1), 826-832.
- Lorenz, K. T. and Kulp, K. (1991). Handbook of cereal science and technology, Marcel Dekkar in New York.
- Mahparaa, S., Imrana, M., Khalidb, M. A., Fatimac, N., Ammard, A., Liaqatd, S. and Kanwald, S. (2024). Correlation and path analysis in different wheat genotypes for grain yield and its related traits. *Pak. J. of Scientific & Industrial Res. Series B, Biological Sci.*, 67(3), 226-231.
- Maurya, R. K., Singh, A. K., Maurya, B. L. and Rao, N. V. (2023). Correlation and path coefficient analysis in wheat (*Triticum aestivum* L.). *I. J. E. C.C.*, **13**(11), 4418-4423.
- Olivoto, T., and Lúcio, A. D. (2020). metan, An R package for multi-environment trial analysis. *Methods Ecol. Evol.* 11, 783–789.
- Rathod, S.T., Pole, S.P. and Gawande, S.M. (2019). Correlation and path analysis for quality and yield contributing traits in wheat (*Triticum aestivum* L.). *Int.J.Curr.Microbiol.App.Sci.*, **8**(6), 456-461.
- Semahegn, Y., Shimelis, H., Laing, M. and Mathew, I. (2020). Evaluation of bread wheat (*Triticum aestivum* L.) genotypes for yield and related traits under drought stress conditions. *Acta Agriculturae Scandinavica, Section B—Soil & Plant Science*, **70**(6), 474–484.
- Sharma, S., Kapoor, P., Kaur, S., Kumari, A., Sharma, N., Kumar, A. and Garg, M. (2021). Changing nutrition scenario, Colored wheat—a new perspective. *Physl., mol., and genetic persp. of wheat impr.*, 71-88.
- Singh, K. P., Singh, V., Sharma, G., Chauhan, M. P., Singh, T. and Yadav, R. D. S. (2020). Correlation and path coefficient analysis in wheat (*Triticum aestivum* L. em. Thell). *Int. J. Curr. Microbiol. App. Sci.*, 9(11), 1570-1581.
- Singh, R., Kumar, T. M. K and Singh, G. P. (2019). Wheat production in India, Trends and prospects. *Rec. Ad. in Grain Crops Res. London*.

- Singh, V., Mishra, A., Sharma, G., Ahalawat, S. and Singh, R. K. (2023). Correlation and path coefficient analysis for yield and its attributing traits in wheat (*Triticum aestivum* L.) Genotypes. *I. J. E. C.C.*, **13**(8), 1944-1951.
- Tripathi, S. N., Shailesh, M., Pandey, P., Jaiswal, K. K. and Tiwari, D. K. (2011). Relationship between some
- morphological and physiological traits with grain yield in bread wheat (*Triticum aestivum* L. em Thell.). *Trends in Appl. Sci. Res.*, **6**(9), 1037-1045.
- Wright, S. (1921). Correlation and causation. *J. Agric. Res.* **20**, 557-585.